Dissecting bacterial virulence regulation: from the bench to the cell

Adams Institute Symposium
University of Kansas
5-19-2017

Nicholas E. Dickenson
Department of Chemistry and Biochemistry
Utah State University
Regulating *Shigella* virulence through the type three secretion system
Shigella flexneri as a Pathogen

- Non motile Gram negative rod
- Causative agent of shigellosis (bacillary dysentery)
- Invades cells and tissues of the colonic epithelium
- High morbidity in developing world
 - >100 million reported cases annually
 - >100,000 deaths
What provides the energetics required for secretion through the *Shigella* T3SA?
Spa47 is an active *Shigella* T3SS ATPase

A

<table>
<thead>
<tr>
<th>kDa</th>
<th>WC</th>
<th>Sup</th>
<th>Chitin</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

- Spa47 Concentration = 1.35 μM
- k_{cat}: Species 1 = 1.18 ± 0.03 sec$^{-1}$
- Species 2 = 0.15 ± 0.01 sec$^{-1}$

J. Burgess et al., 2016, *Protein Science*
Biophysical characterization identifies a novel “activated” Spa47 trimer

J. Burgess et al., 2016, Protein Science
The Spa47 N-terminus is needed for oligomer formation and activation

J. Burgess et al., 2016, Journal of Biological Chemistry
2.4 Å crystal structure of Spa47

J. Burgess et al., 2016, *Journal of Biological Chemistry*

B. Grigorenko et al., 2006, *PNAS*
A Spa47 hexamer model based on F$_1$ ATP synthase provides mechanistic insight

J. Burgess et al., 2016, Journal of Biological Chemistry
Spa47 mutant structures

- Spa47Δ1-79 K165A
 2.15Å

- Spa47Δ1-79 E188A
 2.70Å

- Spa47Δ1-79 R350A
 1.80Å
Effects of ATPase deficient Spa47 on *Shigella* virulence

<table>
<thead>
<tr>
<th>S. flexneri Strain</th>
<th>Complementation</th>
<th>Relative Invasion (% ± SD)</th>
<th>Relative Hemolysis (% ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2457T (WT)</td>
<td>None</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>spa47 null</td>
<td>None</td>
<td>0.8 ± 1.1</td>
<td>0.9 ± 2.0</td>
</tr>
<tr>
<td>spa47 null</td>
<td>spa47/pWPsf4</td>
<td>81.7 ± 10.8</td>
<td>81.4 ± 11.6</td>
</tr>
<tr>
<td>spa47 null</td>
<td>spa47^{K165A}/pWPsf4</td>
<td>0.5 ± 0.2</td>
<td>1.1 ± 1.9</td>
</tr>
<tr>
<td>spa47 null</td>
<td>spa47^{E168A}/pWPsf4</td>
<td>0.2 ± 0.2</td>
<td>0.9 ± 2.0</td>
</tr>
<tr>
<td>spa47 null</td>
<td>spa47^{R330A}/pWPsf4</td>
<td>0.1 ± 0.2</td>
<td>1.2 ± 2.5</td>
</tr>
<tr>
<td>spa47 null</td>
<td>spa47^{A1-79}/pWPsf4</td>
<td>0.2 ± 0.1</td>
<td>0.9 ± 2.2</td>
</tr>
</tbody>
</table>

Congo Red induced secretion

J. Burgess et al., 2016, *Journal of Biological Chemistry*

http://www.cimst.ethz.ch/
Spa47 catalyzed ATP hydrolysis is needed for apparatus formation

J. Burgess et al., 2016, *Journal of Biological Chemistry*
Conclusion 1: Mechanistic insights and a proposed model for Spa47 regulation of *Shigella* virulence

- Spa47 is a *Shigella* T3SS ATPase.
- Spa47 oligomers (trimer) exhibit enhanced activity.
- The N-terminal domain of Spa47 (1-79) is needed for oligomerization and ultimately activation.
- A 2.4 Å crystal structure identified critical active site residues including Arginine 350 which participates in hydrolysis.
- Spa47 ATPase activity is critical for *Shigella* virulence and provides an attractive target for anti-infective agents.
The “Crew”
Acknowledgements

University of Kansas
C. Russel Middaugh, PhD
Ronald Toth IV, PhD
Prashant Kumar, PhD

Utah State University
Sean Johnson, PhD
Yalemi Morales, PhD

Marquette University
Edwin Antony, PhD

NSF
MCB 1530862

NATIONAL INSTITUTES
OF HEALTH
1K22AI099086-01A1
1R15AI124108-01A1